

MCR-003-001515

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

May / June - 2018

Mathematics: 503 (A)

(Discrete Mathematics & Complex Analysis - I) (New Course)

Faculty Code: 003

Subject Code: 001515

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) Figures to the right side indicate marks.
- 1 Answer all the following 20 short questions: 20
 - (1) Define: Antisymmetric Relation.
 - (2) Define: Bounded Lattice.
 - (3) For the Poset (S_{30}, D) , $3' = ____.$
 - (4) Define: Partial order Relation.
 - (5) Define: Lattice Isomorphism.
 - (6) Define: Boolean Algebra.
 - (7) Find the atoms of Boolean Algebra $(S_{30}, *, \oplus, ', 0, 1)$.
 - (8) Define: Atoms in Boolean Algebra.
 - (9) The sum of all minterms of n-variables is _____.
 - (10) If $(L, *, \oplus, 0, 1)$ is bounded lattice then $a \oplus 0 = \underline{\hspace{1cm}}$.
 - (11) Write Laplace equation in polar form.
 - (12) Define: Harmonic function.

- (13) Write the value of $\frac{dw}{dz}$ in polar form.
- (14) Determine $\exp(z)$ is either analytic function or not?
- (15) Imaginary part of $\frac{2+3i}{3-4i}$ is _____.
- (16) If $c: |z-2| = \frac{1}{2}$ then $\int_{c} \frac{dz}{z-3} =$ _____.
- (17) If c: |z| = 3 then $\int_{c} \frac{z^2}{z-3} dz =$ _____.
- (18) State fundamental theorem of Algebra.
- (19) Evaluate: $\int_{c} \frac{z+2}{z} dz$ where c is the circle $z = 2e^{i\theta}$, where $0 \le \theta \le 2\pi$.
- (20) Find the value of $\int_{0}^{2\pi} \cos\left(\frac{z}{2}\right) dz$ in the exponential form.
- 2 (a) Attempt any three:

- 6
- (1) Consider the Relation $R = \{(i, j) | |i j| = 2\}$ on $\{1, 2, 3, 4, 5, 6\}$. Is R transitive?
- (2) Define: Meet and Join.
- (3) In a complemented distributive lattice show that $a \wedge b' = 0 \implies a' \vee b = 1$.
- (4) $(B, *, \oplus, ', 0, 1)$ is Boolean Algebra then prove that (a')' = a where $a \in B$.
- (5) Let $(B, *, \oplus, ', 0, 1)$ is Boolean Algebra then $\forall a, b \in B$ prove that $a \le b \implies a * b' = 0$.
- (6) If a and b are distinct atoms of the Boolean Algebra $(B, *, \oplus, ', 0, 1)$ then prove that a * b = 0.

- (b) Attempt any three:
 - (1) Z be the set of integers and given $R = \{(x, y) \mid x y \text{ is divisible by 5}\}$ check whether R is an equivalence Relation or not.
 - (2) In usual notation show that (S_6, D) is a lattice.
 - (3) Give an example of a bounded lattice which is not complemented lattice.
 - (4) Prove that A non zero element a of Boolean Algebra $(B, *, \oplus, ', 0, 1)$ is an atom iff $\forall x \in B$ either a * x = 0 or a * x = a.
 - (5) If $(B, *, \oplus, ', 0, 1)$ is Boolean Algebra then prove that for any $x_1, x_2 \in B$, $A(x_1 * x_2) = A(x_1) \cap A(x_2)$.
 - (6) Express $\alpha(x_1, x_2, x_3) = x_1 + x_2$ as "Sum of product canonical form".
- (c) Attempt any two:

10

9

- (1) State and prove Distributive inequality.
- (2) Prove that every chain is a distributive lattice.
- (3) Let L_1 be the lattice $D_6 = \{1, 2, 3, 6\}$ (divisor of 6) and L_2 be the lattice $(P(s), \subseteq)$ where $S = \{a, b\}$. Then show that D_6 is Isomorphic to P(s).
- (4) State and prove D' Morgan's law for the Boolean Algebra.
- (5) Write all the minterms of the two and three variables.
- 3 (a) Attempt any three:

- 6
- (1) Show that $f(z) = z \overline{z}$ is not an analytic function.
- (2) Define: Limit of a complex function.
- (3) If $f = u + i\vartheta$ and its complex conjugate $\overline{f} = u i\vartheta$ are analytic then show that f is constant.
- (4) Evaluate $\int_{i}^{i/2} e^{\pi z} dz$.
- (5) Evaluate $\int_{c} \frac{z dz}{(q-z^2)(z+i)}$ where c be the positively oriented circle |z| = 2.
- (6) State Cauchy inequality.

(b) Attempt any three:

- (1) If u and v are conjugate harmonic function then prove that the family of curves obtained by $u = c_1$ and $v = c_2$ are orthogonal.
- (2) Prove that $u = r^2 \sin 2\theta$ is a harmonic function and find its conjugate.
- (3) Find an analytic function f(z) whose real part is $\cos x \cdot \cosh y$.
- (4) Find the value : $\int_{c} \frac{dz}{z^2 + 4}$, c: |z i| = 2.
- (5) State and prove Cauchy's fundamental theorem.
- (6) Prove that $\left| \int_{c} \frac{z+4}{z^{3}-1} dz \right| \le \frac{6\pi}{7}$ where c be the arc of the circle |z| = 2 from z = 2 to z = 2i.
- (c) Attempt any two:

10

- (1) Obtain Cauchy-Riemann condition for an analytic function f(z) is polar form.
- (2) Prove that the analytic function of constant modulus is also constant in its domain D.
- (3) Prove that $f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$

satisfied Cauchy-Riemann conditions at origin however f(z) is not analytic function at origin.

- (4) Find the value of $\int_{c} (3z+1) dz$ where c is a square joining points z = 0, z = 1, z = i and z = 1 + i.
- (5) State and prove Liouville's theorem.